Matrices, Multiple Dimensions in Quantum Mechanics

There comes to be two main approaches to Quantum Mechanics. One approach is an equations approach which uses wavefunctions, operators and sometimes eigenstages. The other approach is a linear algebra approach that uses matrices, vectors and eigenvectors to describe quantum mechanics.


Consider an example of a quantum mechanical problem that uses linear algebra for the description of particle spin:


This allows for a more direct view of commutators as discussed in the previous article on quantum mechanics [link]. Matrices have an advantage of storing much more information elegantly and are convenient for commutations.


Matrices in fact can be written for x_hat, p_hat and other operators. Matrices are also useful for introducing more than one dimension. We can also make use of this method to give us a three-dimensional Schroedinger equation. First we will start by forming three dimensions of momentum p vectors.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s