P-I-N Junction Simulation in ATLAS

Introduction to ATLAS

ATLAS by Silvaco is a powerful tool for modeling for simulating a great number of electronic and optoelectronic components, particularly related to semiconductors. Electrical structures are developed using scripts, which are simulated to display a wide range of parameters, including solutions to equations otherwise requiring extensive calculation.

 

P-I-N Diode

The function of the PN junction diode typically fall off at higher frequencies (~3GHz), where the depletion layer begins to be very small. Beyond that point, an intrinsic semiconductor is typically added between the p-doped and n-doped semiconductors to extend the depletion layer, allowing for a working PN junction structure in the RF domain and to the optical domain. The following file, a P-I-N junction diode is an example provided with ATLAS by Silvaco. The net doping regions are, as expected at either end of the PIN diode. This structure is 10 microns by 10 microns.

optoex01_plot0

The code used to create this structure is depicted below.

449

 

The cutline tool is used through the center of the PIN diode after simulating the code. The Tonyplot tool allows for the plotting of a variety of parameters, such as electric field, electron fermi level, net doping, voltage potential, electron and hole concentration and more.

445446447448

One thought on “P-I-N Junction Simulation in ATLAS”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s