Bragg Gratings

Bragg gratings are commonly used in optical fibers. Generally, an optical fiber has a relatively constant refractive index throughout. With a FBG (Fiber Bragg Grading) the refractive index is varied periodically within the core of the fiber. This can allow certain wavelengths to be reflected while all others are transmitted.


The typical spectral response is shown above. It is clear that only a specific wavelength is reflected, while all others are transmitted. Bragg Gratings are typically only used in short lengths of the optical fiber to create a sort of optical filter. The only wavelength to be reflected is the one that is in phase with the Bragg grating distribution.

A typical usage of a Bragg Grating is for optical communications as a “notch filter”, which is essentially a band stop filter with a very high Quality factor, giving it a very narrow range of attenuated frequencies. These fibers are generally single mode, which features a very narrow core that can only support one mode as opposed to a wider multimode fiber, which can suffer from greater modal distortion.

The “Bragg Wavelength” can be calculated by the equation:

λ = 2n∧

where n is the refractive index and ∧ is the period of the bragg grating. This wavelength can also be shifted by stretching the fiber or exposing it to varying temperature.

These fibers are typically made by exposing the core to a periodic pattern of intense laser light which permanently increases the refractive index periodically. This phenomenon is known as “self focusing” which is when refractive index can be permanently changed by extreme electromagnetic radiation.


1 thought on “Bragg Gratings

  1. Pingback: Rsoft Tutorials 7. Index Grating | RF/Photonics Lab

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s