Sinusoidal and Exponential Sequences, Periodicity of Sequences

Continuing our discussion on discrete-time sequences, we now come to define exponential and sinusoidal sequences. The general formula for a discrete-time exponential sequence is as follows:

x[n] = Aα^n.

This exponential behaves differently according to the value of α. If the sequence starts at n=0, the formula is as follows:

x[n] = Aα^n * u[n].

expo

If α is a complex number, the exponential function exhibits newer characteristics. The envelope of the exponential is |α|. If |α| < 1, the system is decaying. If |α|> 1, the system is growing.

cexpo

When α is complex, the sequence may be analyzed as follows, using the definition of Euler’s formula to express a complex relationship as a magnitude and phase difference.

Captu56 ma

Where ω0 is the frequency and φ is the phase, for n number of samples, a complex exponential sequence of form Ae^jw0n may be considered as a sinusoidal sequence for a set of frequencies in an interval of 2π.

A sinusoidal sequence is defined as follows:

x[n] = Acos(ω0*n + φ), for all n, and A, φ are real constants.

Periodicity for discrete-time signals means that the sequence will repeat itself for a certain delay, N.

x[n] = x[n+N] : system is periodic.

t = (-5:1:15)’;

impulse = t==0;
unitstep = t>=0;
Alpha1 = -0.5;
Alpha2 = 0.5;
Alpha3 = 2.5;
Alpha4 = -2.5;
cAlpha1 = -0.5 – 0.5i;
cAlpha2 = 0.5 + 0.5i;
cAlpha3 = 2.5 -2.5i;
cAlpha4 = -2.5 + 2.5i;
A = 1;

Exp1 = A.*unitstep.*Alpha1.^t;
Exp2 = A.*unitstep.*Alpha2.^t;
Exp3 = A.*unitstep.*Alpha3.^t;
Exp4 = A.*unitstep.*Alpha4.^t;

cExp1 = A.*unitstep.*cAlpha1.^t;
cExp2 = A.*unitstep.*cAlpha2.^t;
cExp3 = A.*unitstep.*cAlpha3.^t;
cExp4 = A.*unitstep.*cAlpha4.^t;

%%
figure(1)
subplot(2,1,1)
stem(t, impulse)
xlabel(‘x’)
ylabel(‘y’)
title(‘Impulse’)

subplot(2,1,2)
stem(t, unitstep)
xlabel(‘x’)
ylabel(‘y’)
title(‘Unit Step’)
%%
figure(2)
subplot(2,2,1)
stem(t, cExp1)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = -0.5 – 0.5i’)

subplot(2,2,2)
stem(t, cExp2)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = 0.5 + 0.5i’)

subplot(2,2,3)
stem(t, cExp3)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = 2.5 -2.5i’)

subplot(2,2,4)
stem(t, cExp4)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = -2.5 + 2.5i’)
%%
figure(3)
subplot(2,2,1)
stem(t, Exp1)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = -0.5’)

subplot(2,2,2)
stem(t, Exp2)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = 0.5’)

subplot(2,2,3)
stem(t, Exp3)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = 2.5’)

subplot(2,2,4)
stem(t, Exp4)
xlabel(‘n’)
ylabel(‘x[n]’)
title(‘Exponential: alpha = -2.5’)

 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s