Energy Bandgaps

Previously, a PN Junction Simulator in ATLAS program was posted. Now, we will use and modify this program to explore more theory in respect to semiconductor materials, high speed electronics and optoelectronics.

The bandgap, as mentioned previously is the difference between the conduction band energy and valence band energy. The materials GaAs, InP, AlGaAs, InGaAs and InGaAsP are simulated and the bandgap values for each are estimated (just don’t use these values for anything important).

• GaAs: ~ 1.2 eV
• InP: ~ 1.35 eV
• AlGaAs: ~ 1.8 eV
• InGaAs: ~0.75 eV
• InGaAsP: 1.1 eV Here the conduction band and valence band are shown. The structure used in the PN Junction Simulator is found below:

#TOP TO BOTTOM – Structure Specification
region num=1 bottom thick = 0.5 material = GaAs NY = 20 acceptor = 1e17
region num=3 bottom thick = 0.001 material = InP NY = 10
region num=4 bottom thick = 0.001 material = GaAs NY = 10
region num=5 bottom thick = 0.001 material = AlGaAs NY = 10 x.composition=0.3 grad.3=0.002
region num=6 bottom thick = 0.001 material = GaAs NY = 10
region num=7 bottom thick = 0.001 material = InGaAs NY = 10 x.comp=0.468
region num=8 bottom thick = 0.001 material = GaAs NY = 10
region num=9 bottom thick = 0.001 material = InGaAsP NY = 10 x.comp=0.145 y.comp = 0.317
region num=2 bottom thick = 0.5 material = GaAs NY = 20 donor = 1e17

Is the bandgap affected by doping the concentration level?

A quick simulation (below) will tell us that the answer is no. What might influence the bandgap however? And what could the concentration level change? This (above) is a simulation of GaAs with layers at different doping concentration levels. The top is a contour of the bandgap, which is constant, as expected. The top right is a cross section of this GaAs structure (technically still a pn junction diode); the bandgap is still constant. The bottom two images are the donor and acceptor concentrations.

The bandgap energy E_g is the amount of energy needed for a valence electron to move to the conduction band. The short answer to the question of how the bandgap may be altered is that the bandgap energy is mostly fixed for a single material. In praxis however, Bandgap Engineering employs thin epitaxial layers, quantum dots and blends of materials to form a different bandgap. Bandgap smoothing is employed, as are concentrations of specific elements in ternary and quarternary compounds. However, the bandgap cannot be altered by changing the doping level of the material.