Electric Potential and Electric Potential Energy

Electric potential can be summarized as the work done by an electric force to move a charge from one point to another. The units are in Volts. Electric potential is not dependent on the shape of the path that the work is applied. Being a conservative system, the amount of energy required to move a charge in a full circle, to return it back to where it started will be equal to zero.

The work of an electrostatic field takes the formula

W12 = keqQ(1/r1 – 1/r2),

which is found by integrating the the charge q times the electric field. The work of an electrostatic field also contains both the electric potential and electric potential energy. Electric potential energy, U is equal to the electric potential φ multiplied by the charge q. Electric potential energy is a difference of potentials, while electric potential uses the exact level of electric potential in the given case.

0001

To calculate electric potential energy, it is convenient to assume that the potential energy is zero at a distance of infinity (and surely it should be). In this case, we can write the electric potential energy as equal to the work needed to move a charge from point 1 to infinity.

0010

We’ll consider a quick application related to both the dipole moment and the electric potential. The dipole potential takes the formula in the figure below. Dipole potential decreases faster with distance r than it would for a point charge.

0011

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s