Optical Loss in Optical Waveguides and Free Carrier Absorption

Sources of loss in optical waveguides include free carrier absorption, band edge absorption, surface roughness, bending loss, and two photon absorption. Optical loss can be determined from the imaginary index of refraction.

Band edge absorption is a wavelength-dependent absorption based on material properties. For wavelengths above the bandgap wavelength (approx. 1 micron), the band edge absorption and free-carrier absorption of GaAs is greatly reduced. Free-carrier absorption caused by doping is still a concern for optical waveguide loss, however.

Free carrier absorption is loss in optical waveguides due to interaction of photons and charge carriers. The effects of free carrier absorption can be calculated using the free carrier coefficients of electrons and holes for the material and the doping concentration. Since doping is used to create a PIN structure, it is therefore wiser based on free carrier absorption to have the regions surrounding the intrinsic waveguide core to be lightly doped. The imaginary dielectric constant due to free carrier absorption, based on doping levels is calculated as follows. The doping concentration for electrons and holes are n and p respectively, the bulk refractive index is n0, the wavenumber is k, and FCN and FCP are the free carrier coefficients of electrons and holes respectively.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s