Tagged: Physics Toggle Comment Threads | Keyboard Shortcuts

  • mbenkerumass 10:02 am on November 27, 2019 Permalink | Reply
    Tags: , , Physics, RADAR   

    Doppler Effect 

    RF/Photonics Lab
    November 2019
    Michael Benker


    Doppler Effect

                    The Doppler Effect is an important principle in communications, optics, RADAR systems and other systems that deal with the propagation of signals through space. The Doppler Effect can be summarized as the resultant change to a signal’s propagation due to movement either by the source or receiving end of the signal. As the distance between two objects changes, so does the frequency. If, for instance, a signal is being propagated towards an object that is moving towards the source, the returning signal will be of a higher frequency.


    The Doppler Effect is also applied to rotation of an object in optics and RADAR backscatter scenarios. A rotating target of a radar or optical system will return a set of frequencies which reflect the distances of each point on the target. If one side of the target is moving closer while the other side is moving away, there will be both a higher and lower frequency component to the return signal.


  • mbenkerumass 10:08 am on November 22, 2019 Permalink | Reply
    Tags: , Optics, Physics   

    Interferometry – Introduction 

    RF/Photonics Lab
    Jared Alves
    November 2019

    Interferometry – Introduction

                    Interferometry is a family of techniques in which waves are superimposed for measurement purposes. These waves tend to be radio, sound or optical waves. Various measurements can be obtained using interferometry that portray characteristics of the medium through which the waves propagate or properties of the waves themselves. In terms of optics, two light beams can be split to create an interference pattern when the waves combine (superimpose). This superposition can lead to a diminished wave, an increased wave or a wave completely reduced in amplitude. In an easily realizable physical sense, tossing a stone into a pond creates concentric waves that radiate away from where the stone was tossed. If two stones are thrown near each other, their waves would interfere with each other creating the same effect described previously. Constructive interference is the superposition of waves that results in a larger amplitude whereas destructive interference diminishes the resultant amplitude. Normally, the interference is either partially constructive or partially destructive, unless the waves are perfectly out of phase. The following image displays total constructive and destructive interference.


    A simple way to explain the operation of an interferometer is that it converts a phase difference to an intensity. When two waves of the same frequency are added together, the result depends only on the phase difference between them, as explained previously.

    interferrometry2The image above shows a Michelson interferometer which uses two beams of light to measure small displacements, refractive index changes and surface irregularities.  The beams are split using a mirror that is not completely reflective and angled so that one beam is reflected, and one is not. The two beams travel in separate paths which combine to produce interference. Whether the waves combine destructively or constructively depends on distancing between the mirrors. Because the device shows the difference in path lengths, it is a differential device. Generally, one leg length is kept constant for control purposes.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc