Tagged: Semiconductors Toggle Comment Threads | Keyboard Shortcuts

  • jalves61 8:19 pm on April 2, 2020 Permalink | Reply
    Tags: Semiconductors   

    Thermoelectric Effect, Thermoelectric current and the Seebeck Effect 

    There are three types of current flow in a semiconductor: Drift, diffusion, and thermoelectric. Drift current is very familiar as the study of conductors leads us to know that when a potential gradient (voltage) is established, electrons will flow in a conductor to balance this out. The same effect happens in semiconductors. However, there are two types of charge carriers in semiconductors: electrons AND holes. This leads to diffusion current, which is caused by a concentration gradient rather than a potential gradient.

    The third kind of current within a semiconductor is called thermoelectric current. which involves the conversion of a temperature gradient to a voltage. A thermocouple is a device which measures the difference in potential across two dissimilar materials where one end is heated and the other is cold. It was found that the temperature difference was proportional to the potential difference. Although Alessandro Voltage first discovered this effect, it was later rediscovered by Thomas Seebeck. The combination of potential differences leads to the full definition of current density.

    j1

    eemf

    S is called as the “thermopower” or “Seebeck coefficient” which is units of Volts/Kelvin. The two equations of Ohm’s law (point form) and E_emf look remarkably similar.

    thermo

    The Seebeck coefficient is negative for negative charge carriers and positive for positive charge carriers, leading to a difference in the Seebeck Coeffecient between the P and N side of the PN junction above. This leads to the above circuit being used as a thermoelectric generator. If a voltage source replaces the resistor, the circuit becomes a thermal sensor. These (thermoelectric generators) are often employed by power plants to convert wasted heat energy into additional electric power. They are also used in car engine engines for the same reason (fuel efficiency). Solid state devices have a huge advantage in the sense that they require no moving parts or fluids which eliminates much of the need for maintenance. They also reduce environmental impact by converting waste heat into electrical energy.

     
  • jalves61 8:00 pm on March 29, 2020 Permalink | Reply
    Tags: , Semiconductors,   

    Photovoltaic Effect and Theory of Solar Cells 

    Just as plants receive energy from the sun and use it to produce glucose, a photovoltaic cell receive energy from the sun and generates an electrical current. The working principle is based on the PN junction, which will be revisited here.

    Silicon can be subdivided into several discrete energy levels called “bands”. The major bands of concern are the valence and conduction bands. The bottom bands are fully occupied and don’t change.

    siliconenergy

    For silicon, the bandgap energy is 1.1eV. For an intrinsic semiconductor, the Fermi level is directly between the conduction and valence band. This is because there is an equal number of holes in the valence band as electrons in the conduction band. This means the probability of occupation of energy levels in both bands are equal. The Fermi level rises in the case of an n-type semiconuctor (doped with Phosphorous) and declines towards the valence band in a p-type (doped with Boron).

    The following illustrates an energy band diagram for a semiconductor with no bias across it. Photodiodes (light sensors) operate in this manner.

    intrinsicenergy

    The Fermi energy is shown to be constant. On the far right hand side away from the depletion region, the PN junction appears to be only P-type (hence the low Fermi level with respect to the conduction band). Likewise, on the left the Fermi level is high with respect to the conduction band. The slope of the junction is proportional to the electric field. A strong electric field in the depletion region makes it harder for holes and electrons to move away from the region. When a forward bias is applied, the barrier decreases and current begins to flow (assuming the applied voltage is higher than the turn on voltage of 0.7V). Current flows whenever recombination occurs. This is because every time an electron recombines on the P side, an electron is pushed out of the N side and beings to flow in an external circuit. The device wants to stay in equilibrium and balance out. This is why solar cells (as opposed to photodiodes) are designed to operate in a forward bias mode.

    The sunlight produces solar energy in the frequency bands of Ultraviolet, infrared and visible light. In order to harness this energy, silicon is employed (made from sand and carbon). Silicon wafers are employed in solar cells. The top layer of the silicon is a very thin layer doped with phosphorous (n-type). The bottom is doped with P-type (doped with Boron). This forms the familiar PN junction. The top layer has thin metal strips and the bottom is conductive as well (usually aluminum). Only frequencies around the visible light spectrum are absorbed into the middle region of the solar cell. The photon energy from the sun knocks electrons loose in the depletion region which causes a current to flow. The output power of a single solar cell is only a few watts. To increase power, solar cells are wired in series and parallel to increase the voltage and current. Because the output of the solar cells is DC, the output is run through an inverter, a high power oscillator that converts the DC current to an 240V AC current compatible with household appliances.

    solar_16x9_2

     
  • mbenkerumass 5:00 am on March 14, 2020 Permalink | Reply
    Tags: , , , Semiconductors   

    Direct-Bandgap & Indirect-Bandgap Semiconductors 

    Direct Semiconductors

    When light reaches a semiconductor, the light is absorbed if the photon energy is greater than or equal to the band gap, creating electron-hole pairs. In a direct semiconductor, the minimum of the conduction band is aligned with the maximum of the valence band.

    qwell2

    gaas

    One example of a direct semiconductor is GaAs. The band diagram for GaAs is shown to

    the right. As the gap between the valence band and conduction band is 1.42eV, if a

    photon of same or greater energy is applied to the semiconductor, a hole-electron pair is created for each photon. This is termed the photo-excitation of semiconductors. The photon is thereby absorbed into the semiconductor.

     

    2232

     

    Indirect Semiconductors and Phonons

    indiresemicFor an indirect semiconductor to absorb a photon, the process must be mediated by phonons, which are quanta of sound and in this case refer to the acoustic vibration of crystal lattice. A phonon is also used to provide energy for radiative recombination. When understanding the essence of a phonon, one should recall that sound is not necessarily within hearing range (20 – 20kHz). In fact, the sound vibrations in a semiconductor may well be in the Terrahertz range. The diagram to the right shows how an indirect semiconductor band would appear and also the use of phonon energy to mediate the process of allowing the indirect semiconductor to behave as a semiconductor.

     

    Excitons

    Excitons are bound electron-hole pairs that are created in pure semiconductors when a photon with bandgap energy or larger is absorbed. In bulk semiconductors, these excitons will dissipate rapidly. In quantum wells however, the excitons may remain, even at room temperature. The effect of the quantum well is to force an electron and hole to be very close to each other. This allows for a strong bonding effect to take place and allows the quantum well the ability to generate light as a semiconductor laser.

     

    Quiz

    The band structure of a semiconductor is given by:

    sc1

    Where mc = 0.2 * m0 and mv = 0.8 * m0 and Eg = 1.6 eV. Sketch the E-k Diagram.

    sc2

     
  • mbenkerumass 6:00 am on February 24, 2020 Permalink | Reply
    Tags: , , Semiconductors   

    Optoelectronic Integrated Circuit Substrate Materials 

    The substrate material used on an optical integrated circuit (OIC) is dependent primarily on the function performed by the circuit. An optical integrated circuit may consist of sources, modulators, detectors, etc and no one substrate will be optimal for all components, which means that a compromise is needed when building an integrated circuit. There are two main approaches that taken to deciding on a solution to this compromise: hybrid and monolithic approaches.

     

    Hybrid Approach

    The hybrid approach attempts to bond more than one substrate together to obtain an optimization for each device in the integrated circuit. This approach allows for a more optimized design for each component in theory, however the process of bolding the various elements together is prone to misalignment and damage from vibration and thermal expansion. For this reason, although the hybrid approach is a theoretically more otpimized approach, it is more common to use the monolithic approach for OIC.

     

    Monolithic Approach

    The monolithic OIC uses a single substrate for all devices. There is one complication in this approach which is that most OIC will require a light source, which can only be fabricated in optically active materials, such as a semiconductor. Passive materials, such as Quartz and Lithium Niobate are effective as substrates, however an external light source would need to be coupled to the substrate to use it.

     

    Optically Passive and Active Materials

    Optically active materials are capable of light generation. The following are examples of optically passive materials:

    • Quartz
    • Lithium Niobate
    • Lithium Tantalate
    • Tantalum Pentoxide
    • Niobium Pentoxide
    • Silicon
    • Polymers

    The following are optically active materials:

    • Gallium Arsenide
    • Gallium Aluminum Arsenide
    • Gallium Arsenide Phosphide
    • Gallium Indium Arsenide
    • Other III-V and II-VI semiconductors

     

    Losses in Substrate due to Absorption

    Monolithic OICs are generally limited to the active substrates above. Semiconductors emit light at a wavelength corresponding to their bandgap energy. They also absorb light at a wavelength equal to or less than their bandgap wavelength. It follows then, for example, if a light emitter, a waveguide and a detector are all fabricated in a single semiconductor, there is a considerable issue of light being absorbed into the substrate, meaning that not enough light will be present for the detector. Thus, reducing losses due to absorbtion is one of the main concerns in substrate materials.

    substrate

     
  • mbenkerumass 6:00 am on February 22, 2020 Permalink | Reply
    Tags: , , , Semiconductors   

    Gas Laser and Semiconductor Lasers 

    heliumconstruction

    The Gas Laser

    In laboratory settings, gas lasers (shown right) are often used to eveluate waveguides and other interated optical devices. Essentially, an electric charge is pumped through a gas in a tube as shown to produce a laser output. Gasses used will determine the wavelength and efficiency of the laser. Common choices include Helium, Neon, Argon ion, carbon dioxide, carbon monoxide, Excimer, Nitrogen and Hydrogen. The gas laser was first invented in 1960. Although gas lasers are still frequently used in lab setting sfor testing, they are not practical choices to encorperate into optical integrated circuits. The only practical light sources for optical integrated circuits are semiconductor lasers and light-emitting diodes.

     

    The Laser Diode

    ladio

    The p-n junction laser diode is a strong choice for optical integrated circuits and in fiber-optic communications due to it’s small size, high reliability nd ease of construction. The laser diode is made of a p-type epitaxial growth layer on an n-type substrate. Parallel end faces may functions as mirrors to provide the system with optical feedback.

     

    The Tunnel-Injection Laser

    The tunnel-injection laser enjoys many of the best features of the p-n junction laser in it’s size, simplicity and low voltage supply. The tunnel-injection laser however does not make use of a junction and is instead made in a single crystal of uniformly-doped semiconductor material. The hole-electron pairs instead are injected into the semiconductor by tunneling and diffusion. If a p-type semiconductor is used, electrons are injected through the insulator by tunneling and if the semiconductor is n-type, then holes are tunneled through the insulator.

     
  • mbenkerumass 6:00 am on February 20, 2020 Permalink | Reply
    Tags: , Quantum Wells, Semiconductors   

    The Quantum Well 

    What is a Quantum Well

    Optical Integraded devices are normally built with the consideration that the device size will be large compared to the wavelength of the beams in the system. When however, the device size is reduced to a size of the same order of magnitude as the wavelength of light in the system, unique properties can be observed. The class of device that operates under the unique properties of this arrangement is the “quantum well.”

     

    Uses of Quantum Wells

    Quantum wells may be integrated to other optical and opt-electronic integrated circuits. Uses of quantum wells include improved lasers, photodiodes, modulators and switches.

     

    Building a Quantum Well

    A quantum well structure features one or more very thin layers of narrow bandgap semiconductor material, interleaved with layers of wider bandgap semiconductors. The thickness of the layers in a quantum well are typically 100 Angstroms or smaller. Quantum wells with many layers are termed a “Multiple Quantum Well” (MQW) structure and quantum wells with only one layer are termed a “Single Quantum Well (SQW) structure. A typical MQW structure may have around 100 layers. The GaAs-AlAs material system or GaInAsP are common choices for materials in quantum well structures.

    quantumwell1

    Superlattice Structure

    A superlattice structure is a term for a case in whic a multiple quantum well structure is built with barrier wals that are thin enough that electrons are able to tunnel through the structure.

     

    The Quantum Well and Quantum Dot

    qwell1

    The quantum well reduces the separation between an electron and hole in a semiconductor, altering the wavefunction and allowing a strong exciton bonding effect at room temperature. The semiconductor laser results from this process. Wave functions in the well are shown to the right.

    When a field is applied across the well, this can result in the tilting of the wells. This can reduce the effective band gap of the material. The process of tilting the wells the alter the band gap is called the Quantum Confined Stark Effect.

    qwell3

     

    Quantum wells are generally understood in two dimensions. The conduction band is forced to be closer the valence band. When this is done in three dimensions to create a small box, where this squeezing effect can be emulated in all dimensions, this is termed a Quantum Dot. A Quantum Dot it turns out is highly effective at producing a high level of energy and as a result there is a high probability that it works as a coherent light source (laser). Quantum dots are readily used today, however since the process of fabrication employs the use of defects in a material to create a quantum dot, the coherency of the light produced is not perfect. Quantum dots are used in data centers for light transmission at a distance of meters. Quantum dots remain a low cost and reasonably efficient light transmission source for small distances. One reason for the low cost of quantum dots is that they can be grown on silicon wafers. A quantum well is not easily (highly unreliably, but perhaps not impossible) grown on Silicon wafers. The issue that arises with quantum wells when being grown on silicon wafers is that the size of atoms in the wafers and thereby the lattice constant is not readily compatible.

     
  • mbenkerumass 7:13 pm on February 7, 2020 Permalink | Reply
    Tags: Semiconductors,   

    The Bipolar Transistor, Modes of Operation 

    The transistor is a multifunction semiconductor device that, when used with other circuit elements has the ability to produce a current gain, voltage gain and signal-power gain. The transistor is referred to as a passive device, while the diode is passive. The three basic types of transistor technologies are the bipolar transistor, the metal-oxide-semiconductor field effect transistor (MOSFET) and the junction field effect transistor (JFET). The bipolar transistor most often functions as a voltage-controlled current source.

    The Bipolar Junction Transistor

    The BJT has three separately doped regions and two pn-junctions, which are close enough to interact between each other. The BJT can either be constructed as an NPN or PNP transistor, which stands for the arrangement of positive and negatively doped regions.

    pnpnpn

    The main connections of a BJT transistor are referred to as the collector, base and emitter. Generally, the emitter side is doped to a higher level than the collector. The result of this is that when a supplied a voltage, the electrons will flow in the direction from the emitter to the collector. The direction of current then will be from the collector to the emitter.

    npnpnp2pnp1

    BJT Modes of Operation

    There exist three modes of operation for the BJT transistor. In reference to the diagram below, when the Base-Emitter voltage is zero or reverse biased, the majority of carrier electrons from the emitter will not be injected into the base. This mode where all currents in the transistor are zero is referred to as cut-off. When the Base Emitter voltage is positive (forward biasing), an emitter current is generated. As the Base Emitter voltage increases, the collector current will continue to increase until a certain point at which both the Base Emitter and Base Collector junctions become forward biased. This mode is called saturation.

    npppnn

     
  • mbenkerumass 5:15 pm on January 22, 2020 Permalink | Reply
    Tags: , Semiconductors   

    ECE530 Advanced Electronics and Optoelectronics 1/21/2020 Class Notes (1st lecture) 

     

    Textbook:        High speed electronics and optoelectronics: devices and circuits, by Sheila Prasad, Hemann Schumacher, and Anand Gopinath, Cambridge university press, 2009

    Learning objective:    Principles of advanced electronics and optoelectronics are illustrated by showing their applications in advanced radar, wired/wireless communications, and electronic sensing. Key electronics/photonics devices including high speed transistors, diodes, lasers, high frequency modulators, photodetectors, amplifiers and passive circuitries are discussed.

    Outcome:       Following the completion of this course students will be able to

    1. Perform quantitative analysis of electronic and photonic systems using the basic principles covered in this course that include: wave propagation through dielectric media and optical waveguides, high frequency electronic circuits, generation and detection of light from semiconductor devices including semiconductor lasers, light emitting diodes and photodetectors and the modulation of light through the electro-optic
    2. Articulate state-of-the-art electronics and photonics technology and future trends
    3. Apply the theory of operation of electronic and photonic devices
    4. Articulate the performance and design trade-offs amongst RF, Digital, and Photonic solutions in EW architecture

    COURSE OUTLINE

    • Review of semiconductor materials and physics
      1. Semiconductor materials/crystal structure (1 week)
      2. Carrier transport/recombination/generation (2 week)
      3. Heterostructures (1 week)
    • Electronic devices
      1. High speed FET (2 week)
      2. High speed HBT (1 week)
    • Optoelectronics
      1. Optical sources (2 week)
      2. Photodetector (2 week)

     

     

    Review of Quantum Mechanics

    A course in devices would not be complete without device physics. The foundations of semiconductor devices are… Quantum Mechanics! A good resource for review in Quantum Mechanics, aside from the course textbook is the Quantum Physics course provided by MIT OpenCourseWare. This includes video lecutres, assignments, exams and more for three whole semesters’ worth of Quantum Mechanics. Quantum Physics is also important for studying the subject of Photonics and Quantum Electronics deeper and is necessary to become an expert in a related field. More review of Quantum Mechanics is to come soon.

    Quantum Physics I
    Video lectures: https://archive.org/details/MIT8.04S16/
    Syllabus: https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/syllabus/

    Quantum Physics II
    https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/

    Quantum Physics III
    https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2016/

    Other courses available are found here: https://ocw.mit.edu/courses/find-by-topic/

     

    T-CAD, RSoft

    This course features the use of Rsoft and T-CAD, Silvaco for device modeling, doping and bandgap engineering problems.

     

    Semiconductors

    Silicon wafers (~4″) go for about $20. GaN wafers on the other hand go for about ~$1k. The price differential may be one of the few things silicon has going for it. In other cases, consider that Silicon does not work at high speeds. For high speed semiconductor devices, III-V semiconductors are preferred and will work better. One other interesting downside of Silicon is that it is unable to emit light.

    5301

    The Hybrid HBT is a better option for transistor technologies at higher frequencies. The HBT features higher electron mobility.

    5302

    This course will also feature study of Ternary and Quarternary Compounds. Quarternary compounds are used for quantum well lasers. Ternary Compounds feature one variable x where quarternary compounds feature two variables x,y. Another important ternary compound not listed in InGaAs.

     

    Material Growth

    We will also discuss the process for fabrication and material growth. Material growth and fabrication is a process that generally requires a high level of technological know-how and thus only few countries manage to perform this operation. Currently, it is even possible to grow one atomic layer (Angstrom) at a time. Two methods of material growth are MOCVD (Nobel Prize awarded for this discovery) and MBE (should also get a Nobel Prize soon). MOCVD is particularly best for producing many at the same time, while MBE is better used for research production.

     

    Bell Laboratories

    As an aside, consider the company that had existed before breaking up, Bell Laboratories. At Bell Laboratories, given a monopoly it was able to fund scientists and researchers to conduct free-range scientific research and discovery. Today, researchers at Universities (primarily) need to provide evidence of advancement ever 6 months or so. A program such as Bell Laboratories allowed for aimless research to be conducted, which ended up being far more successful than could have been imagined.

     

    Types of Solids

    Consider the three types of solids, Crystalline, Polycrystalline and Amorphous. Crystalline structures feature atoms that are aligned periodically and produce a unique shape (example: Quartz). Polycrystalline solids include ceramic, saphire, even possibly other metals such as steel. Interesting point about saphire – saphire is used in PCVD as a film. Amorphous solids include liquidated solids, glass and other liquids.

    5303

    Semiconductors feature a lattice structure as the two below:

    5304

     

    Crystal Directions and Planes

    The following are three types of crystal directions and planes:

    5305

    It is of note that etching in crystals must be done in only certain directions according to the ‘grain’ of the crystal. In order to split a waver along a grain, make a notch at one point on the side and apply a pressure to the wafer.

     

    Atomic Bonding
    It is important to review the effect of covalent bonding between valence electrons.

    5307

    Next class, the topic of wave equations will be covered.

     

     

     
  • mbenkerumass 7:00 am on January 11, 2020 Permalink | Reply
    Tags: Semiconductors,   

    BJT vs. FET 

    Transistors are important components that are used in a variety of applications. Some types can be used for switching, some for amplification or both. Other transistors perform exclusive tasks, such as the phototransistor, which responds to light by producing a current.

    The main premise of a transistor is that by feeding a transistor a source voltage or current (depending on the type), the transistor allows for the passage of electrons. This process is accomplished through pnp or npn semiconductor structures. The following diagrams provide a general example of the function of a transistor:

    t4t2

    transistor

    t3

     

     

    Bipolar Junction Transistors (BJT) are controlled using a biasing current at the base pin. This means that they will also consume more current than other transistors such as the FET. One advantage of BJT transistors is that they offer greater output gain than an FET. However, BJT can be much larger in size than FET and for this reason, they are less popular, despite being easier to manufacture.

    bjt

    Field Effect Transistors (FET) are voltage-controlled. For this reason they essentially draw no current and therefore do not pose a substantial load to a circuit. FETs are not as useful for gain as BJT, however if the intent is not for amplification then this is not a problem. FETs can be manufactured very small and this is important in manufacturing integrated circuits that use many transistors. FETs and especially the MOSFET subtype are more expensive to manufacture, but remain more popular than the BJT.

    fet

    Some FET transistor types are even constructed on the nano-scale. The FinFET for example is about 10 nm, currently used by Intel, Samsung and others.

    FinFET size

    (2) http://www.learningaboutelectronics.com/Articles/Types-of-transistors.php

     
  • mbenkerumass 6:00 am on January 4, 2020 Permalink | Reply
    Tags: , Semiconductors   

    The P-N Junction 

    A P-N junction is created in a single semiconductor crystal by doping one side as a p-type and one as an n-type. The region where the two types converge is known as the p-n junction.

    The extra electrons that were added to the n-type semiconductor move towards the p-type junction side while the holes added through p-type doping are positioned closer to the n-type junction.

    pnj2

    As electrons leave the n-type region, it becomes positively charged. This process is called diffusion. The depletion region is the area between the p and n-type sides. The state of equilibrium in the p-n junction is the state of the depletion region without any external electrical potential applied. As mentioned before in a previous paper, the Fermi level is the average between the conduction band and the valence band. By altering the levels of electron holes and electrons in the p-type and n-type sections, holes drift toward the the n-type side and electrons move towards the p-type side, which causes both sections to be closer to the Fermi level in their regions of the material.

    pnj

    When voltage is applied to the pn junction, electrons and electron holes from either side tend towards equilibrium. If the positive potential is applied to the p-type and it is more positive than the n-type area, holes will travel towards the negative voltage. Through diffusion, electrons or electron holes may jump through the depletion layer. For the reason however that electron holes (positive charge) may only move in the direction of the n-type region and electrons (negative charge) may only move in the opposite direction. The direction of electron flow, due to their negative charge is opposite the conventional direction of current flow. Since electrons are only moving from the n-type region to the p-type region, it can be understood that current will only move in the direction going from the side of the p-type region towards the n-type region.pnj1

     

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel